The Impacts of Biogenic Emissions Estimates from BEIS-3 on Ozone Modeling in the Southeastern US

presented at the

11th Annual Emissions Inventory Conference, Atlanta, GA
April 15-18, 2002

Saravanan Arunachalam, Zachariah Adelman, Rohit Mathur, & Jeffrey Vukovich

MCNC-Environmental Modeling Center Research Triangle Park, NC 27709-2889 sarav@emc.mcnc.org

Outline

- Introduction
 - Background
 - Objectives
- Modeling Systems
- Results
- Discussion
- Future Work

Background

- Emissions of NO_x and VOCs from anthropogenic (manmade) and biogenic (natural) sources contribute to form ozone
- Grid-based photochemical air quality models used to study ozone formation
 - used for regulatory as well as scientific purposes
 - use emissions processing systems to estimate emissions from various sources
- Large uncertainties remain in these emissions estimates
 - A factor of three for total VOCs nationwide is quoted in literature
- Understanding contribution of natural sources to ozone formation has significant implications towards choice and extent of controls needed on anthropogenic sources to demonstrate attainment of ozone standards

Objectives

- To evaluate the impacts of using biogenic emissions estimates from a prototype version of BEIS-3 on ozone predictions
 - Perform sensitivity simulations of MAQSIP and compare model predictions when using BEIS-2 versus BEIS-3 emissions estimates in a nested domain in the Southeastern United States

Modeling Systems

- Fifth-Generation Penn State/NCAR Mesoscale Model Version 2 (MM5 V2.12)
- Sparse Matrix Operator Kernel Emissions (SMOKE) for generating emissions inputs
- Biogenic Emissions Inventory System
 - (BEIS-2 and BEIS-3)
- Multiscale Air Quality Slmulation Platform (MAQSIP)
- Platform Independent I/O API format for all inputs and outputs
- June 19-30, 1996 episode in North Carolina

Biogenic Emissions Inventory System

BEIS-2

Five CB-4 Species (NO, ALD2, ISOP, OLE, PAR)

BEIS-3

- Prototype version with explicit speciation
- 1-km resolution landuse data from BELD3
- 230 different landuse types
- 34 BEIS-3 species mapped to 12 CB-4 Species (CO, NO, ALD2, ETH, ETOH, FORM, ISOP, MEOH, OLE, PAR, TOL, XYL)
- Treats CO, NO production from soils, and biomass burning

The Multiscale Air Quality Simulation Platform

A comprehensive urban to intercontinental atmospheric chemistry/transport model

- Developed at MCNC in collaboration with EPA
 - Served as a prototype for EPA's Models-3/CMAQ modeling system
- Has been used at various scales to study problems related to tropospheric O₃, acidic substances, and aerosol formation
 - Seasonal simulation for 1995 over Eastern US
 - Regulatory episodic applications in NC, VA
 - Other studies to analyze
 - Relationship between pollutant transport and distribution over western Europe
 - CO transport and distribution over the North Atlantic region and the Asia Monsoon Region
 - Transport and chemical evolution of Asian outflow over the Pacific Ocean
 - Real-time Ozone forecasting system over the Eastern United States
 - Fine grids around Houston, Boston, Birmingham in summers of 1999-2001

MAQSIP (...contd.)

Modular

 Physical/chemical processes cast as modules; each process module operates on a common concentration field

Flexible

- Alternate process representations and algorithms
- Provides a test-bed to compare different process representations/schemes

Expandable

New modules can be added to the system

Multiscale

- Multiple multi-level nested grids
- One-way and two-way

Generalized Coordinates facilitates

- Use of different map projections applications of various geographic regions around the globe
- Interfacing with meteorological models

MAQSIP

Processes Represented & Interrelationships

Nested Modeling Domain

[36/12/4-km Grids]

AQ Monitors in the 12-km Grid

12-km Observation Sites

Episodic Maximum 8-h O3 (June 19-30, 1996) (Click on each site to view time-series)

11

Biogenic Emissions Estimates [Jun 24, 1996]

Total (Anth+Biog) Emissions Estimates [Jun 24, 1996]

Biogenic Emissions Estimates

[36-km Grid: Jun 24, 1996]

Biogenic Emissions Estimates

[12-km Grid: Jun 24, 1996]

Total (Anth+Biog) Emissions Estimates

[36-km Grid: Jun 24, 1996]

Total (Anth+Biog) Emissions Estimates

[12-km Grid: Jun 24, 1996]

Discussion

- Biogenic VOCs using BEIS-3 (compared to BEIS-2) increased by 79%, 62%, and 47% in the 36,12, and 4-km grids
- Total (Anth+Biog) VOCs using BEIS-3 (compared to BEIS-2) increased by 58%, 52%, 40% in the 36,12, and 4-km grids
- Corresponding increase in ISOP by 17%, 18% and 4%
- Large increases in MEOH, ETOH, and FORM
- ALD2, PAR, and NO emissions decrease
 - Total decrease in NO budget range from 1-3% in the 3 grids

Modifications to MAQSIP

- Added two reactions to explicitly treat MEOH and ETOH oxidation within MAQSIP
 - MeOH + OH \rightarrow HO₂ + HCHO EtOH + OH \rightarrow HO₂ + ALD₂
 - Reaction Rate Constants from DeMore et al. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Jet Propulsion Laboratory, California Institute of Technology, 1997
- Dry deposition velocities for paraffins (PAR) were used as approximations for MEOH and ETOH

Model Performance Evaluation

[O3 Obs Threshold = 5ppb]

Layer 1 Mean O3 (Obs Thresh=5ppb) June 19-30, 1996

Statistical Measures

[Layer 1 O₃ in the 36-km Grid: Jun 19-30, 1996]

AQM	Thres (ppb)	Avg Mod	Avg Obs	Bias	R ²	NBias	GrEr
BEIS-2	60	69.6	74.8	-5.2	0.13	0.061	0.184
BEIS-3	60	72.7	74.8	-2.1	0.14	0.020	0.181
BEIS-2	40	62.0	62.7	-0.7	0.22	-0.010	0.244
BEIS-3	40	64.8	62.7	2.1	0.23	-0.056	0.249
BEIS-2	5	53.2	46.5	6.8	0.33	-0.483	0.683
BEIS-3	5	55.6	46.5	9.2	0.35	-0.549	0.714

Statistical Measures

[Layer 1 O₃ in the 12-km Grid: Jun 19-30, 1996]

AQM	Thres (ppb)	Avg Mod	Avg Obs	Bias	R ²	NBias	GrEr
BEIS-2	60	70.6	75.6	-5.0	0.13	0.057	0.171
BEIS-3	60	73.0	75.6	-2.5	0.14	0.024	0.176
BEIS-2	40	63.6	63.8	-0.3	0.25	-0.020	0.224
BEIS-3	40	65.8	63.8	2.0	0.24	-0.056	0.236
BEIS-2	5	55.4	47.9	7.5	0.35	-0.525	0.700
BEIS-3	5	57.3	47.9	9.5	0.35	-0.577	0.732

Daily Max O₃ in 12-km grid [Jun 21-30, 1996]

8-h AQI Counts from BEIS-2 Simulation

8-h AQI Counts from BEIS-3 Simulation

Diff in Daily 8hr Max O3

Loss of MEOH / Prod of FORM

Layer 1 Average 1-5PM Ratio June 24, 1996 MAQSIP_RT BEIS-3 Sensitivity

Diff in Daily 1hr Max O3

Impacts of Biogenic Emissions Estimates from BEIS-3

28

Impacts of Biogenic Emissions Estimates from BEIS-3

29

Discussion

- Sensitivity study performed to compare BEIS-2 vs. BEIS-3 emissions estimates in MAQSIP
 - Biogenic VOCs increase due to large amounts of MEOH from BEIS-3
 - MAQSIP CB-4 chemistry updated to treat explicit alcohol oxidation
 - Average 1-h O₃ increases by 1-3 ppb in all grids
 - Leads to better model performance at a 60ppb threshold
 - Some correlation seen in predicted ozone increases due to addition of radical sources from alcohol oxidation products
 - Comparison of daily maxima of 1-h and 8-h O₃ shows a consistent positive bias using BEIS-3 at all observed locations
 - However, not much bias seen based upon monitor location type (Urban/Rural/Suburban)

Future Work

- Continue IRR-type analyses
- Use actual deposition velocities for MEOH/ETOH in MAQSIP instead of PAR surrogates
- Continue evaluation using further updates to BEIS-3
- Perform sensitivities in other episodes/domains

Acknowledgments

North Carolina Department of Air Quality

Website for Results

 http://www.emc.mcnc.org/projects/NCDAQ/PGM/ results/basecase96/gdk96/index.html

